Publications

Digital Cellulose Center publications

Peer-review Journal publications (2024)

  1. T. Benselfelt, G. C. Ciftci, L. Wågberg, et al., (2024) Entropy Drives Interpolymer Association in Water: Insights into Molecular Mechanisms. ACS Publications.
  2. S. Lander, J. Pang, J. Erlandsson, et al., (2024) Controlling the rate of posolyte degradation in all-quinone aqueous organic redox flow batteries by sulfonated nanocellulose based membranes: The role of crossover and Michael addition. Journal of Energy Storage.
  3. P. Isacsson, E. Björk, E. Capanema, et al., (2024) Electrochemical Characteristics of Ligninin CTMP for Paper Battery Electrodes. Chemistry Europe.
  4. A. Hajian, K. Jain, N. I. Kilic, et al., (2024) Recyclable electroactive paper based on cationic fibers adaptable to industrial papermaking. Cellulose.
  5. R. Brooke, K. Jain, P. Isacsson, et al., (2024) Digital Cellulose: Recent Advances in Electroactive Paper. Annual Review of Materials Research.
  6. H. Yang, J. Edberg, M. G. Say, et al., (2024) Study on the Rectification of Ionic Diode Based on Cross-Linked Nanocellulose Bipolar Membranes. Biomacromolecules.
  7. C. Kuang, S. Chen, M. Liao, et al., (2024) Electrically tunable infrared optics enabled by flexible ion-permeable conducting polymer-cellulose paper. npj Flexible Electronics.
  8. C. H. Dreimol, R. Kürsteiner, M. Ritter, et al., (2024) Iron-Catalyzed Laser-Induced Graphitization – Multiscale Analysis of the Structural Evolution and Underlying Mechanism. Small.

Peer-review Journal publications (2023)

  1. M. Y. Mulla, P. Isacsson, I. Dobryden, et al. (2023) Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment. Global Challenges.
  2. Z. Wang, P. Heasman, J Rostami, et al. (2023) Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries. Advanced Functional Materials.
  3. K. Jain, Z. Wang, L. D. Garma, et al., (2023) 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics. Applied Materials Today.
  4. R. Brooke, J. Edberg, I. Petsagkourakis, et, al. (2023) All‐Printed Multilayers and Blends of Poly(dioxythiophene) Derivatives Patterned into Flexible Electrochromic Displays  Advanced Materials Technologies.
  5. N. H. Alvi, N. Sepat, S. Sardar, et al. (2023) Toward Photoactive Wallpapers Based on ZnO-Cellulose Nanocomposites. Global Challenges.
  6. N. H. Alvi, M. Y. Mulla, T. Abitbol, et al., (2023) The Fast and One-Step Growth of ZnO Nanorods on Cellulose Nanofibers for Highly Sensitive Photosensors. MDPI Journals. 
  7. T. Benselfelt, J. Shakya, P. Rothemund, et al., (2023) Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation. Advanced Materials
  8. M. S. Reid, W. Suganda, E. Östmark, et al., (2023) Dewatering of Micro- and Nanofibrillated Cellulose for Membrane Production. ACS Sustainable Chemistry and Engineering.
  9. T. Benselfelt, N. Kummer, M. Nordenström, et al., (2023) The Colloidal Properties of Nanocellulose, ChemSusChem

Peer-review Journal publications (2022)

  1. J. Edberg, U. Boda, M. Y. Mulla (2022) A Paper-Based Triboelectric Touch Interface: Toward Fully Green and Recyclable Internet of Things. Advanced Sensor Research.
  2. S. Lander, J. Erlandsson, M. Vagin, et al. (2022) Sulfonated Cellulose Membranes: Physicochemical Properties and Ionic Transport versus Degree of Sulfonation. Advanced Sustainable Systems.
  3. S. Lander, M. Vagin, V. Gueskine, et al. (2022) Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batteries. Advanced Energy and Sustainability Research.
  4. R. Brooke et al. (2022) Large-scale paper supercapacitors on demand Journal of Energy Storage, 104191.
  5. A. B. Fall, F. Hagel, J. Edberg, et al. (2022) Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes. ACS Applied Polymer Materials.
  6. X. Wang, M. G, Say, R. Brooke, et al. (2022) Upscalable ultra thick rayon carbon felt based hybrid organic-inorganic electrodes for high energy density supercapacitors. Energy Storage.
  7. J. Edberg, M. Y. Mulla, et al. (2022) A Forest-Based Triboelectric Energy Harvester. Global Challenges.
  8. R. Brook, M. Lay, et al. (2022) Nanocellulose and PEDOT:PSS composites and their applications. Polymer Reviews.
  9. P. Isacsson, K. Jain, A. Fall, et al. (2022) Production of energy-storage paper electrodes using a pilot-scale paper machine. Journal of Materials Chemistry A.

Peer-review Journal publications (2021)

  1. Jain, K., Mehandzhiyski, A. Y., Zozoulenko, I., & Wågberg, L. (2021). PEDOT: PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. Journal of Colloid and Interface Science, 584, 57-66.
  2. Jain, K., Reid, M. S., Larsson, P. A., & Wågberg, L. (2021). On the interaction between PEDOT: PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydrate Polymers, 260, 117818.
  3. Zhao, D., Sultana A., Edberg J. (2021). The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectric. Journal of Materials Chemistry C.
  4. Yang, H., Edberg J., Gueskine V (2021) The effect of crosslinking on ion transport in nanocellulose-based membranes. Carbohydrate Polymers.
  5. Y.C. Gorur, et al. “Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters” ACS Applied Materials & Interfaces 13, (2021) 32467−32478.

Conference Proceedings (2021)

  1. N.M. Grimalt rt al., BERTicsson: A Recommender System For Troubleshooting. Workshop on Scientific Document Understanding (SDU@AAAI), co-located with AAAI, February, 2022.
  2. M. Hägglund et al., CoCluBERT: Clustering Machine Learning Source Code, The IEEE International Conference on Machine Learning and Applications (ICMLA), Virtual, December 2021.
  3. A. Corodescu et al., Locality-Aware Workflow Orchestration for Big Data, The ACM International Conference on Management of Digital EcoSystems (MEDES), November, 2021.
  4. K.F. Erliksson et al., Cross-Domain Transfer of Generative Explanations using Text-to-Text Models, International Conference on Natural Language and Information Systems (NLDB), June, 2021.
  5. S. Sheikholeslami et al., AutoAblation: Automated Parallel Ablation Studies for Deep Learning, Workshop on Machine Learning and Systems (EuroMLSys), co-located with EuroSys, April, 2021.
  6. K. Hakimzadeh et al., IMITA: Imitation Learning for Generalizing Cloud Orchestration, The IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May, 2021.
  7. M. Angelovska et al., Siamese Neural Networks for Detecting Complementary Products, Student Research Workshop (EACL-SRW), co-located with EACL, April, 2021.

Peer-review Journal publications (2020)

  1. Edberg, J., Brooke, R., Hosseinaei, O., Fall, A., Wijeratne, K., & Sandberg, M. (2020). Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. npj Flexible Electronics, 4(1), 1-10.
  2. Isacsson, P., Wang, X., Fall, A., Mengistie, D., Calvie, E., Granberg, H., … & Engquist, I. (2020). Highly Conducting Nanographite-Filled Paper Fabricated via Standard Papermaking Techniques. ACS applied materials & interfaces, 12(43), 48828-48835.
  3. Ail, U., Phopase, J., Nilsson, J., Khan, Z. U., Inganäs, O., Berggren, M., & Crispin, X. (2020). Effect of Sulfonation Level on Lignin/Carbon Composite Electrodes for Large-Scale Organic Batteries. ACS Sustainable Chemistry & Engineering, 8(49), 17933-17944.
  4. Vagin, M., Che, C., Gueskine, V., Berggren, M., & Crispin, X. (2020). Ion‐ Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries. Advanced Functional Materials, 30(52), 2007009.
  5. Ajjan, F. N., Khan, Z., Riera-Galindo, S., Lienemann, S., Vagin, M., Petsagkourakis, I., … & Crispin, X. (2020). Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly (3, 4‐Ethylenedioxythiophene). Advanced Energy and Sustainability Research, 2000027.
  6. Chaharsoughi, M. S., Edberg, J., Ersman, P. A., Crispin, X., Zhao, D., & Jonsson, M. P. (2020). Ultrasensitive electrolyte-assisted temperature sensor. npj Flexible Electronics, 4(1), 1-7.
  7. Wågberg, L., & Erlandsson, J. (2020). The Use of Layer‐by‐Layer Self‐ Assembly and Nanocellulose to Prepare Advanced Functional Materials. Advanced Materials, 2001474.

Peer-review Journal publications (2019)

  1. Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures, Michael S. Reid, Johan Erlandsson, Lars Wågberg; ACS Macro Letters 2019 8 (10), 1334-1340.
  2. Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule, Zhen Wang, Liangqi Ouyang, Weiqian Tian, Johan Erlandsson, Andrew Marais, Klas Tybrandt, Lars Wågberg, and Mahiar Max Hamedi; Langmuir 2019 35 (32), 10367-10373.
  3. Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose, Weiqian Tian, Armin Vahid Mohammadi, Michael S. Reid, Zhen Wang, Liangqi Ouyang, Johan Erlandsson, Torbjörn Pettersson, Lars Wågberg, Majid Beidaghi, Mahiar M. Hamedi. First published:13 August 2019; Advanced Materials, Volume31, Issue41, October 11, 2019.
  4. Greyscale and Paper Electrochromic Polymer Displays by UV Patterning, Robert Brooke, Jesper Edberg, Xavier Crispin, Magnus Berggren, Isak Engquist, and Magnus Jonsson; Polymers 2019, 11(2), 267.

Peer-review Journal publications (2018)

  1. Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils, Johan Erlandsson, Hugo Françon, Andrew Marais, Hjalmar Granberg, and Lars Wågberg; Biomacromolecules 2019, 20, 2, 728-737, Publication Date (Web): November 5, 2018.

Conference Contributions

Conference Contributions (2021)

  1. Opportunities for production of nonwoven bio-based electronics, Hjalmar Granberg; INDEX™ Smart Nonwovens: High-performance Nonwovens seminar. October 20, 2021.
  2. Cellulose-based supercapacitors, from 1D charge transport to printed 3D electrodes, Isak Engquist, Jesper Edberg, Robert Brooke, Mehmet Girayhan Say, Negar Sani, Dagmawi Belaineh, Göran Gustafsson, Magnus Berggren; European Materials Research Society: Cellulose electronics and photonics: a new challenge for materials a new opportunity for devices III. June 1, 2021.
  3. Highly conducting nanographite-filled paper fabricated via standard papermaking techniques, Patrik Isacsson, Xin Wang, Andreas Fall, Desalegn Mengistie, Emilie Calvie, Hjalmar Granberg, Göran Gustafsson, Magnus Berggren, Isak Engquist; European Materials Research Society: Cellulose electronics and photonics: a new challenge for materials a new opportunity for devices III. May 31, 2021.
  4. Facile method for the investigation of polarization phenomena in cellulosic materials, Dagmawi Belaineh, Tiffany Abitbol, Yusuf Mulla, Karl Håkansson, Valerio Beni, Mats Sandberg; European Materials Research Society: Cellulose electronics and photonics: a new challenge for materials a new opportunity for devices III. May 31, 2021.
  5. Laser-induced graphitization of screen printed forest-based ink for green flexible electronics, Jesper Edberg, Robert Brooke, Omid Hosseinaei, Andreas Fall, Kosala Wijeratne, Mats Sandberg; European Materials Research Society: Cellulose electronics and photonics: a new challenge for materials a new opportunity for devices III. May 31, 2021.

Conference Contributions (2020)

  1. Meister, M., Sheikholeslami, S., Payberah, A. H., Vlassov, V., & Dowling, J. (2020, December). Maggy: Scalable Asynchronous Parallel Hyperparameter Search. In Proceedings of the 1st Workshop on Distributed Machine Learning (pp. 28-33).
  2. Nardelli A., Vlassov V & Payberah A.H: (2020). Framework-Agnostic Optimization of Repeated Skewed Joins at Massive Scale. In ”The IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA)”.
  3. Mitropolitsky M., Abbas Z. & Payberah A.H., (2020). Graph Representation Matters in Device Placement. In ”Workshop on Distributed Infrastructures for Deep Learning (DIDL), co-located with Middleware”.

Conference Contributions (2019)

  1. Wood-based electronic building blocks, Hjalmar Granberg, Andreas Fall; E waste World Conference and Expo, 14 November 2019.
  2. Electroactive Papers, Films, Filaments, Aerogels and Hydrogels to Realize the Future of Bio-Based Electronics, Hjalmar Granberg, Karl Hakansson, Andreas Fall, Pia Wagberg; PaperCon 2019: Proceedings, TAPPI Press, 2019, article-id PF4.1.

DCC reports

  1. R. Brooke, J. Edberg, K. Freitag, P. A. Ersman (2023) Enhancing sustainability of flexible all-printed electrochromic displays OPE journal – No 44/2023 – OPE Journal – Organic & Printed Electronics (ope-journal.com)
  2. Abitbol.T et al. (2022) Sensors and energy harvesting devices applicable on cellulose products – a literature survey. ChemRxiv pre-print.
  3. Karpenja. T, Granberg. H, Edberg. J, Ahniyaz. A. (2022)  Circularity of DCC materials – case study on three energy storage solutions. 
  4. Gimåker. M, Granberg. H. (2021)  Graphite materials – Production from biomass?
  5. Patrik Isacsson, Karishma Jain, Andreas Fall, Valerie Chauve, Alireza Hajian,, Hjalmar Granberg, Lucie Boiron, Magnus Berggren, Karl Håkansson, Jesper Edberg, Isak Engquista, and Lars Wågberg (2021).  Production of an energy-storage electrode paper using a pilot-scale paper machine. ChemRxiv pre-print.

PhD thesis

  1. Johan Erlandsson (2019) Controlled Assembly and functionalization of cellulose-based materials
  2. Karishma Jain (2022) Design of Cellulose-Based Electrically Conductive Composites: Fundamentals, Modifications, and Scale-up.
  3. Sanna Lander (2023) Sulfonated Cellulose Membranes for Energy Storage Applications.
  4. Hongli Yang (2023) Ion Transport in Cross-linked Nanocellulose Membranes

Master thesis

  1. Investigation of Graphene-nanocellulose hybrid films as barrier material in packages; Jens Bodelsson; Master Thesis within Polymer Technology; KASM 15, Lund University. Approved 2018, Published 2019.
  2. Minimizing pore size of nanocellulose aerogel particles; Stivan Sabir; Master Thesis, Uppsala University; Approved 2018, Published 2019.
  3. Morteza Khedri (2022) 2.4 GHz Microstrip Antenna Design on Novel Paper Substrates, LIU.
  4. Dan Selsmark (2023). Dielectric response of ion-exchanged electrotechnical insulation papers; A study on the properties of novel papers, KTH.
  5. Jonathan Tar & Jonathan Grenthe (2024). Explorative Life Cycle Assessment of a Wood-Derived Graphene Manufactured by Laser-Induced Process, LiU.  
  6. Sampada Prashant Pudke (2024). Optimization and Scalability of the Production of Laser Induced Graphene with Wood Derived Precursors, KTH

Associated Publication

Peer-review Journal publications (2020)

  1. Bamgbopa, M. O., Belaineh, D., Mengistie, D. A., Edberg, J., Engquist, I., Berggren, M., & Tybrandt, K. (2021). Modelling of heterogeneous ion transport in conducting polymer supercapacitors. Journal of Materials Chemistry A, 9(4), 2184-2194.
  2. Say, M. G., Brooke, R., Edberg, J., Grimoldi, A., Belaineh, D., Engquist, I., & Berggren, M. (2020). Spray-coated paper supercapacitors. npj Flexible Electronics, 4(1), 1-7.
  3. Gamage, S., Kang, E. S., Åkerlind, C., Sardar, S., Edberg, J., Kariis, H., … & Jonsson, M. P. (2020). Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C, 8(34), 11687-11694.
  4. Garg, M., Linares, M., & Zozoulenko, I. (2020). Theoretical Rationalization of Self-Assembly of Cellulose Nanocrystals: Effect of Surface Modifications and Counterions. Biomacromolecules, 21(8), 3069-3080.
  5. Han, S., Ruoko, T. P., Gladisch, J., Erlandsson, J., Wågberg, L., Crispin, X., & Fabiano, S. (2020). Cellulose‐Conducting Polymer Aerogels for Efficient Solar Steam Generation. Advanced Sustainable Systems, 4(7), 2000004.
  6. Rolland, N., Mehandzhiyski, A. Y., Garg, M., Linares, M., & Zozoulenko, I. V. (2020). New patchy particle model with anisotropic patches for molecular dynamics simulations: Application to a coarse-grained model of cellulose Nanocrystal. Journal of chemical theory and computation, 16(6), 3699-3711.
  7. Mehandzhiyski, A. Y., Rolland, N., Garg, M., Wohlert, J., Linares, M., & Zozoulenko, I. (2020). A novel supra coarse-grained model for cellulose. Cellulose, 27(8), 4221-4234.
  8. Miglbauer, E., Gryszel, M., & Głowacki, E. D. (2020). Photochemical evolution of hydrogen peroxide on lignins. Green Chemistry, 22(3), 673- 677.
  9. Marais, A., Erlandsson, J., Söderberg, L. D., & Wågberg, L. (2020). Coaxial Spinning of Oriented Nanocellulose Filaments and Core–Shell Structures for Interactive Materials and Fiber-Reinforced Composites. ACS Applied Nano Materials, 3(10), 10246-10251.

Peer-review Journal publications (Prior to 2020)

  1. Edberg, J., Brooke, R., Granberg, H., Engquist, I., & Berggren, M. (2019). Improving the performance of paper supercapacitors using redox molecules from plants. Advanced Sustainable Systems, 3(8), 1900050.
  2. Wang, X., Grimoldi, A., Håkansson, K., Fall, A., Granberg, H., Mengistie, D., … & Gustafsson, G. (2019). Anisotropic conductivity of CellulosePEDOT: PSS composite materials studied with a generic 3D four-point probe tool. Organic electronics, 66, 258-264.
  3. Che, C., Vagin, M., Ail, U., Gueskine, V., Phopase, J., Brooke, R., … & Crispin, X. (2019). Twinning Lignosulfonate with a Conducting Polymer via Counter‐Ion Exchange for Large‐Scale Electrical Storage. Advanced Sustainable Systems, 3(9), 1900039.
  4. Brooke, R., Edberg, J., Say, M. G., Sawatdee, A., Grimoldi, A., Åhlin, J., … & Engquist, I. (2019). Supercapacitors on demand: all-printed energy storage devices with adaptable design. Flexible and Printed Electronics, 4(1), 015006.
  5. Han, S., Alvi, N. U. H., Granlöf, L., Granberg, H., Berggren, M., Fabiano, S., & Crispin, X. (2019). A multiparameter pressure–temperature–humidity sensor based on mixed ionic–electronic cellulose aerogels. Advanced Science, 6(8), 1802128.
  6. Bamgbopa, M. O., Edberg, J., Engquist, I., Berggren, M., & Tybrandt, K. (2019). Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors. Journal of Materials Chemistry A, 7(41), 23973-23980.
  7. Mitraka, E., Vagin, M., Sjöstedt, A., Berggren, M., Håkansson, K. M., Jonsson, M. P., & Crispin, X. (2019). PEDOT‐Cellulose Gas Diffusion Electrodes for Disposable Fuel Cells. Advanced Sustainable Systems, 3(12), 1900097.
  8. Andreas Willfahrt, Erich Steiner, Jonas Hötzel & Xavier Crispin; Printable acid-modified corn starch as non-toxic, disposable hydrogelpolymer electrolyte in supercapacitors,; Applied Physics A; volume 125, Article number: 474 (2019).
  9. Che, C., Vagin, M., Wijeratne, K., Zhao, D., Warczak, M., Jonsson, M. P., & Crispin, X. (2018). Conducting Polymer Electrocatalysts for Proton‐ Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels. Advanced Sustainable Systems, 2(7), 1800021.
  10. Jiao, F., Edberg, J., Zhao, D., Puzinas, S., Khan, Z. U., Mäkie, P., … & Crispin, X. (2018). Nanofibrillated Cellulose‐Based Electrolyte and Electrode for Paper‐Based Supercapacitors. Advanced Sustainable Systems, 2(1), 1700121.
  11. Edberg, J., Inganäs, O., Engquist, I., & Berggren, M. (2018). Boosting the capacity of all-organic paper supercapacitors using wood derivatives. Journal of Materials Chemistry A, 6(1), 145-152.
  12. Edberg, J., Malti, A., Granberg, H., Hamedi, M. M., Crispin, X., Engquist, I., & Berggren, M. (2017). Electrochemical circuits from ‘cut and stick’PEDOT: PSS-nanocellulose composite. Flexible and Printed Electronics, 2(4), 045010.

Digital Cellulose Center in the media

  • AzoNano, October 2023: Tiny brick-busting ‘muscles’ for miniature robotics are sourced from wood. 
  • Phys.org, October 2023: Tiny brick-busting ‘muscles’ for miniature robotics are sourced from wood. 
  • EurekAlert, October 2023: Tiny brick-busting ‘muscles’ for miniature robotics are sourced from wood. 
  • Elektroniktidningen, October 2023: “One hour about PFAS”
  • Smartare Elektroniksystem, October 2023: How will the upcoming PFAS directive impact electronics.
  • Elektroniktidningen, September 2023: One hour about PFAS webinar.
  • Graphene Flagship, June 2023: Materials of the future: Graphene and lignin.
  • LignoCity, April 2023: The combination of lignin and electronics – opportunities and challenges. YouTube.
  • Byggindustrin, December 2022: “Swedish paper battery can become part of future buildings.”
  • Printed Electronics Now, November 2022: Sweden’s Digital Cellulose Center is Developing Paper Supercapacitors.”
  • OPE  Journal, November 2022: “Digital Cellulose Center – Renewable energy storage for buildings.”
  • Electronics Weekly, November 2022: “‘Paper’ supercaps reach 10F.”
  • Passive Components, November 2022: “Researchers Demonstrated 10F Power Paper Supercapacitor”
  • Le Maitre Papetier, September 2022: “Paper to store energy.”
  • Sveriges Radio, September 2022: “The paper battery will store energy in buildings.”
  • Tidningen Näringslivet, September 2022: “Paper battery will store renewable energy in buildings.”
  • Energi & Miljö, September 2022: “The paper battery that can store energy in properties.”
  • Voister, September 2022: “New Swedish battery – made of paper.”
  • Paper Advance, September 2022: “Renewable energy storage for buildings.”
  • Process Nordic, September 2022: “Paper battery can solve the energy supply and climate impact.”
  • Svenskverkstad, September 2022: “Paper batteries that can store energy.”
  • Evertiq, September 2022: “Rise: Paper battery can store energy in buildings.”
  • Energinyheter, September 2022: “Researchers at RISE have developed a paper battery that can store energy in buildings.”
  • Hållbart byggande, September 2022: “The paper battery that can store energy in buildings”.
  • Papper och Massa, September 2022: “Paper battery will be able to store energy in buildings”.
  • Scandinavian Mind, July 2022: “Research project creates paper-like material to conduct — even store — electricity.”
  • Svensk Papperstidning, March 2022, issue no. 2, p. 18-20: “Energy-efficient method for nanocellulose films.”
  • London Newstime, December 10, 2021: “Supercapacitor electrodes made of organic material.”
  • Passive Components, December 10, 2021: “Power Paper Shows Promise of Clean High Energy Storing Capability.”
  • Electronics Weekly, December 9, 2021: “Supercapacitor electrodes made of organic material.”
  • Paper Advance, October 27, 2021: “Electrode paper in future batteries and energy storage.”
  • Elektroniktidningen, September 29, 2021, no. 9, p 18-19: “New research: One step closer to electronic paper strips on a roll.”
  • Nordisk Papper & Massa, September 16, 2021: “Energy storage – a new future market for paper?”. E-magazine, issue no. 4, p. 30-35.
  • Svensk Papperstidning, issue no. 5, p. 12-15, September 10, 2021: New technique for energy storage – Electrode paper in future batteries and energy storage.”
  • Process Nordic, September 1, 2021: “Here is the paper that can store energy – This is how it will be manufactured.”
  • Östgöta Correspondenten, July 13, 2021: ”Charcoal and coconuts develop into batteries”.
  • Treesearch, June 23, 2021: “Advances in making paper for energy storage.”
  • NyTeknik, June 21, 2021: “Their electronic papers can store the renewable energy of the future.” Full article.
  • PackMarknaden, June 8, 2021: ”What if packages could speak”.
  • Elektroniktidningen, October 15, 2020: “They have developed the first organic battery.”
  • PapNews, March 27, 2017: ”New competence center: Digital Cellulose Center at RISE, LiU and KTH.”
  • Papper och Massa, March 24, 2017: ”New competence center: Digital Cellulose Center.”